什么是依赖注入

Spring 能有效地组织J2EE应用各层的对象。不管控制层的Action对象,还是业务层的Service对象,还是持久层的DAO对象,都可在Spring的 管理下有机地协调、运行。Spring将各层的对象以松耦合的方式组织在一起,Action对象无须关心Service对象的具体实现,Service对 象无须关心持久层对象的具体实现,各层对象的调用完全面向接口。当系统需要重构时,代码的改写量将大大减少。

上面所说的一切都得宜于Spring的核心机制,依赖注入依赖注入让bean与bean之间以配置文件组织在一起,而不是以硬编码的方式耦合在一起。理解依赖注入

依赖注入(Dependency Injection)和控制反转(Inversion of Control)同一个概念。具体含义:当某个角色(可能一个Java实例,调用者)需要另一个角色(另一个Java实例,被调用者)的协助时,在 传统的程序设计过程中,通常由调用者来创建被调用者的实例。但在Spring里,创建被调用者的工作不再由调用者来完成,因此称为控制反转;创建被调用者 实例的工作通常由Spring容器来完成,然后注入调用者,因此也称为依赖注入

不管依赖注入,还是控制反转,都说明Spring采用动态、灵活的方式来管理各种对象。对象与对象之间的具体实现互相透明。在理解依赖注入之前,看如下这个问题在各种社会形态里如何解决:一个人(Java实例,调用者)需要一把斧子(Java实例,被调用者)。

(1)原始社会里,几乎没有社会分工。需要斧子的人(调用者)只能自己去磨一把斧子(被调用者)。对应的情形为:Java程序里的调用者自己创建被调用者。

(2)进入工业社会,工厂出现。斧子不再由普通人完成,而在工厂里被生产出来,此时需要斧子的人(调用者)找到工厂,购买斧子,无须关心斧子的制造过程。对应Java程序的简单工厂的设计模式。

(3)进入“按需分配”社会,需要斧子的人不需要找到工厂,坐在家里发出一个简单指令:需要斧子。斧子就自然出现在他面前。对应Spring的依赖注入

第一种情况下,Java实例的调用者创建被调用的Java实例,必然要求被调用的Java类出现在调用者的代码里。无法实现二者之间的松耦合。

第二种情况下,调用者无须关心被调用者具体实现过程,只需要找到符合某种标准(接口)的实例,即可使用。此时调用的代码面向接口编程,可以让调用者和被调用者解耦,这也是工厂模式大量使用的原因。但调用者需要自己定位工厂,调用者与特定工厂耦合在一起。

第三种情况下,调用者无须自己定位工厂,程序运行到需要被调用者时,系统自动提供被调用者实例。事实上,调用者和被调用者都处于Spring的管理下,二者之间的依赖关系由Spring提供。

所谓依赖注入指程序运行过程中,如果需要调用另一个对象协助时,无须在代码中创建被调用者,而是依赖于外部的注入。Spring的依赖注入对调用者和被调用者几乎没有任何要求,完全支持对POJO之间依赖关系的管理。依赖注入通常有两种:

·设值注入

·构造注入

设值注入

  设值注入指通过setter方法传入被调用者的实例。这种注入方式简单、直观,因而在Spring的依赖注入里大量使用。看下面代码,Person的接口

//定义Person接口
public interface Person
{
//Person接口里定义一个使用斧子的方法
public void useAxe();
}
然后Axe的接口
//定义Axe接口
public interface Axe
{
//Axe接口里有个砍的方法
public void chop();
}
Person的实现类
//Chinese实现Person接口

public class Chinese implements Person
{
//面向Axe接口编程,而不是具体的实现类
private Axe axe;
//默认的构造器
public Chinese()
{}
//设值注入所需的setter方法
public void setAxe(Axe axe)
{
this.axe = axe;
}
//实现Person接口的useAxe方法
public void useAxe()
{
System.out.println(axe.chop());
}
}

Axe的第一个实现类
//Axe的第一个实现类 StoneAxe

public class StoneAxe implements Axe
{
//默认构造器
public StoneAxe()
{}
//实现Axe接口的chop方法
public String chop()
{
return “石斧砍柴好慢”;
}
}

下面采用Spring的配置文件将Person实例和Axe实例组织在一起。配置文件如下所示:
<!– 下面标准的XML文件头 –>
<?xml version=”1.0″ encoding=”gb2312″?>
<!– 下面一行定义Spring的XML配置文件的dtd –>
“http://www.springframework.org/dtd/spring-beans.dtd”>
<!– 以上三行对所有的Spring配置文件都相同的 –>
<!– Spring配置文件的根元素 –>
<BEANS>
<!—定义第一bean,该bean的idchinese, class指定该bean实例的实现类 –>
<BEAN class=lee.Chinese id=chinese>
<!– property元素用来指定需要容器注入的属性,axe属性需要容器注入此处设值注入,因此Chinese类必须拥有setAxe方法 –>
<property name=”axe”>
<!– 此处将另一个bean的引用注入给chinese bean –>
<REF local=””stoneAxe”/”>
</property>
</BEAN>
<!– 定义stoneAxe bean –>
<BEAN class=lee.StoneAxe id=stoneAxe />
</BEANS>
从配置文件中,可以看到Spring管理bean的灵巧性。bean与bean之间的依赖关系放在配置文件里组织,而不是写在代码里。通过配置文件的 指定,Spring能精确地为每个bean注入属性。因此,配置文件里的bean的class元素,不能仅仅接口,而必须真正的实现类。

Spring会自动接管每个bean定义里的property元素定义。Spring会在执行无参数的构造器后、创建默认的bean实例后,调用对应 的setter方法为程序注入属性值。property定义的属性值将不再由该bean来主动创建、管理,而改为被动接收Spring的注入

每个bean的id属性该bean的惟一标识,程序通过id属性访问bean,bean与bean的依赖关系也通过id属性完成。

下面看主程序部分:

public class BeanTest
{
//主方法,程序的入口
public static void main(String[] args)throws Exception
{
//因为独立的应用程序,显式地实例化Spring的上下文。
ApplicationContext ctx = new FileSystemXmlApplicationContext(“bean.xml”);
//通过Person bean的id来获取bean实例,面向接口编程,因此
//此处强制类型转换为接口类型
Person p = (Person)ctx.getBean(“chinese”);
//直接执行Person的userAxe()方法。
p.useAxe();
}
}
程序的执行结果如下:

石斧砍柴好慢

主程序调用Person的useAxe()方法时,该方法的方法体内需要使用Axe的实例,但程序里没有任何地方将特定的Person实例和Axe实 例耦合在一起。或者说,程序里没有为Person实例传入Axe的实例,Axe实例由Spring在运行期间动态注入

Person实例不仅不需要了解Axe实例的具体实现,甚至无须了解Axe的创建过程。程序在运行到需要Axe实例的时候,Spring创建了Axe 实例,然后注入给需要Axe实例的调用者。Person实例运行到需要Axe实例的地方,自然就产生了Axe实例,用来供Person实例使用。

调用者不仅无须关心被调用者的实现过程,连工厂定位都可以省略(真是按需分配啊!)。下面也给出使用Ant编译和运行该应用的简单脚本:

<?xml version=”1.0″?>
<!– 定义编译该项目的基本信息–>
<PROJECT name=”spring” default=”.” basedir=”.”>
<!– 定义编译和运行该项目时所需的库文件 –>
<PATH id=classpath>
<!– 该路径下存放spring.jar和其他第三方类库 –>
<FILESET dir=../../lib>
<INCLUDE name=”*.jar” />
</FILESET>
<!– 同时还需要引用已经编译过的class文件–>
<PATHELEMENT path=”.” />
</PATH>
<!– 编译全部的java文件–>
<TARGET description=”Compile all source code” name=”compile”>
<!– 指定编译后的class文件的存放位置 –>
<JAVAC debug=”true” destdir=”.”>
deprecation=”false” optimize=”false” failonerror=”true”>
<!– 指定需要编译的源文件的存放位置 –>
<SRC path=”.” />
<!– 指定编译这些java文件需要的类库位置–>
<CLASSPATH refid=”classpath” />
</JAVAC>
</TARGET>
<!– 运行特定的主程序 –>
<TARGET description=”run the main class” name=”run” depends=”compile”>
<!– 指定运行的主程序:lee.BeanTest。–>
<JAVA failonerror=”true” fork=”yes” classname=”lee.BeanTest”>
<!– 指定运行这些java文件需要的类库位置–>
<CLASSPATH refid=”classpath” />
</JAVA>
</TARGET>
</PROJECT>
如果需要改写Axe的实现类。或者说,提供另一个实现类给Person实例使用。Person接口、Chinese类都无须改变。只需提供另一个Axe的实现,然后对配置文件进行简单的修改即可。

Axe的另一个实现如下:

//Axe的另一个实现类 SteelAxe
public class SteelAxe implements Axe
{
//默认构造器
public SteelAxe()
{}
//实现Axe接口的chop方法
public String chop()
{
return “钢斧砍柴真快”;
}
}
然后,修改原来的Spring配置文件,在其中增加如下一行:
<!– 定义一个steelAxe bean–>
<BEAN class=lee.SteelAxe id=steelAxe />
该行重新定义了一个Axe的实现:SteelAxe。然后修改chinese bean的配置,将原来传入stoneAxe的地方改为传入steelAxe。也就是将
<REF local=””stoneAxe”/”>
改成
<REF local=””steelAxe”/”>
此时再次执行程序,将得到如下结果:

钢斧砍柴真快

Person与Axe之间没有任何代码耦合关系,bean与bean之间的依赖关系由Spring管理。采用setter方法为目标bean注入属性的方式,称为设值注入

业务对象的更换变得相当简单,对象与对象之间的依赖关系从代码里分离出来,通过配置文件动态管理。

构造注入

  所谓构造注入,指通过构造函数来完成依赖关系的设定,而不是通过setter方法。对前面代码Chinese类做简单的修改,修改后的代码如下:

//Chinese实现Person接口
public class Chinese implements Person
{
//面向Axe接口编程,而不是具体的实现类
private Axe axe;
//默认的构造器
public Chinese()
{}
//构造注入所需的带参数的构造器
public Chinse(Axe axe)
{
this.axe = axe;
}
//实现Person接口的useAxe方法
public void useAxe()
{
System.out.println(axe.chop());
}
}
此时无须Chinese类里的setAxe方法,构造Person实例时,Spring为Person实例注入依赖的Axe实例。构造注入的配置文件也需做简单的修改,修改后的配置文件如下:
<!– 下面标准的XML文件头 –>
<xml version=”1.0″ encoding=”gb2312″?>
<!– 下面一行定义Spring的XML配置文件的dtd –>
“http://www.springframework.org/dtd/spring-beans.dtd”>
<!– 以上三行对所有的Spring配置文件都相同的 –>
<!– Spring配置文件的根元素 –>
<BEANS>
<!—定义第一个bean,该bean的idchinese, class指定该bean实例的实现类 –>
<BEAN class=lee.Chinese id=chinese>
</BEAN>
<!– 定义stoneAxe bean –>
<BEAN class=lee.SteelAxe id=steelAxe />
</BEANS>
执行效果与使用steelAxe设值注入时的执行效果完全一样。区别在于:创建Person实例中Axe属性的时机不同——设值注入现创建一个默认的bean实例,然后调用对应的构造方法注入依赖关系。而构造注入则在创建bean实例时,已经完成了依赖关系的
原文链接:http://blog.csdn.net/taijianyu/article/details/2338311/